
Software Carpentry

Tools and approaches for more
effective scientific software

development.

C. Titus Brown
Bronner-Fraser Lab, Caltech /

Michigan State University

Background

• Effective software development is important
for research.

• Scientists tend to be poorly trained. (I’m no
exception.)

• Relatively small investment in tools and
techniques can yield big rewards.

• Secret: industry sucks at developing
software, too.

“Software Carpentry”

• Not science per se ;)

• About using free/OSS tools and
specific project management
techniques to increase speed,
reproducibility, and effectiveness of
scientific software development.

Outline

1. Build & configure tools
2. Version control
3. Project management
4. Interpreted languages
5. Automated testing for research software
6. screen and VNC: neat UNIX tools

A short quiz
Build tools: make, VC++, Xcode, Eclipse?

Configure tools: autoconf/configure, cmake?

Version control: CVS, svn, etc.?

Project management: Trac, DrProject?

Interpreted languages: matlab, Python, Perl?

Testing?

Configure and build tools

• Automate process of configuring software
on multiple computers with different
options, libraries, etc.

• Build process automation aims to build
software with a single command;

• Build software also can recompile minimum
parts of software when a source file is
changed.

CMake

• Tool for automatically finding libraries and
configuring a build, for C/C++ software.

• Produces build files compatible with ‘make’,
VC++, and Xcode.

• Works on Windows, UNIX, Mac.

(Demo)

Why build tools?
• (Probably don’t need convincing…!)

• As soon as a project moves beyond one file, making
sure that compilation stays in sync becomes
problematic.

• For many more than one file, can be slow to
recompile everything every time.

• Build tools automate common tasks.

Example: ‘make clean’

• Sometimes you need to start from
scratch (stale object file/binaries,
new compile options, whatever)

• Figuring out what files to delete can
be annoying.

• Automate process => ‘make clean’.

Version control

• Manage “working” vs “in progress”
code.

• Coordinate between multiple
developers.

• Track entire history of source code.
• Automatic backup to remote machine.
• Determine changes (intended vs

unintended…) in latest version.

Version control - one or more
users

Example: subversion

Magic commands:

svn diff
svn revert
svn status

(Demonstration.)

More subversion

Exists for every platform (TortoiseSVN
for Windows).

Supports read-only source code export.
Lots of good documentation.

Using a source code control system is
critical, even for one-person projects.

Project management

• Manage source code, bugs, feature
requests, project documentation…

• A number of open source tools out there;
Trac, DrProject recommended. Combines
wiki, source browser, ticket system,
scheduling.

• “Trac” demo:

Interpreted languages

• “Interpreted” vs “compiled” --
distinction is losing its meaning, but:
– Compiled: Fortran, C/C++, Java
– Interpreted: Matlab, Perl, Python

• Interpreted languages are often
higher level and always less formal.

Python: Eratosthenes’ sieve
def divides(primes, n):
 for trial in primes:
 if n % trial == 0: return True
 return False

def prime_sieve():
 p, current = [], 1
 while 1:
 current += 1
 if not divides(p, current):

p.append(current) # prime!
return

 yield current

A few reasons to use Python
• Easy to learn, with C-like syntax;
• Easily wraps C/C++ code;
• Very good string handling;
• Full built-in library;
• Cross-platform (Windows, Mac, UNIX);
• Fantastic for rapid prototyping;
• Higher-level data types:

– Dictionaries (hash tables or “maps”)
– Lists

• Fully object-oriented;
• Interactive interpreter;

A few reasons to use Python

Bold claim:

3-10x productivity increase in software
development.

(Software Carpentry online course teaches
Python.)

Wrapping C with Python
(For speed and/or interaction with existing code)

Can be done by hand or automatically (SWIG, Boost,
SIP)

Lends itself to pipelining (A->B->C), code reuse,
testing, and major code reorganizations.

Can dramatically ease parallelization issues.

Examples in “Advanced Software Carpentry” text.

Software testing

What do you think of when you hear
“you should test”?

(Manual “smoke tests” -- push buttons,
see if smoke emerges?)

Test automation

1. Automate as many tests as possible.

2. Run them frequently.

3. Get a single report.

What do I mean by
“testing”?

For research software:

Does my code work?

Can I trust results?

Are previous results reproducible as code
changes over time?

Types of automated tests

Functional tests: does my code perform specific
functions properly?

Regression tests: has the output of my code changed?

(Lots more types, but these are the two types that
are most important for research software.)

Functional testing
x = 2

test that square works
y = math.pow(x, 2)
assert y == 4

test that sqrt works
z = math.sqrt(y)
assert z == 2

Functional testing
• “white box” -- asserts things about results of

code, inside the code.
• Should be pretty simple.
• Often requires that software be in “known state” -

- empty database, specific data files in specific
places, random number generator with specific seed
set

• Good for complicated/tricky pieces of code that
aren’t intellectually challenging.

Regression testing
% ./run-program x=5 y=10 z=15 > results.out
% diff results.out results.good

(…but completely automated, for several or many
different parameter sets; complain if ‘diff’ is not
empty.)

Regression testing
• “black box” - tests exercise compiled code and only

need to know input/output.
• Test utilities can be really really simple (“compare

these two data files”)
• Not very good at pinpointing why code is different.
• Incredibly powerful in combination with version

control!

Testing summary
Functional and regression tests are two good lines of

defense against weird stuff happening in your code.

Functional tests are especially good for slow-changing
but annoyingly tricky bits of code (e.g. data file
format handling).

Regression tests are excellent for determining when
change (wanted or unwanted) occurs.

Getting started is easier than it sounds ;)

Testing rewards
Code becomes more robust.

You are more confident in your results (or, rather,
your confidence in your results is more warranted).

Multi-person projects become much easier to
coordinate.

Maintenance load (e.g. software/OS/hardware
updates) decreases.

screen and VNC

Problem:

Calculations and display can take a long
time to finish.

Sometimes you need to be elsewhere
(home, conference, …).

screen and VNC

screen is a free/OSS program for
persistent text login sessions on UNIX.

VNC is a free/OSS program for
persistent X-window/Mac graphical
login sessions on UNIX.

screen Demo

VNC Demo

VNC notes

Secure VNC is more difficult than insecure
VNC.

You have to start your session in VNC.

VNC is built into new Mac OS X.

VNC viewers are available for all platforms.

Concluding thoughts

• There are a lot of tools and approaches
that can help you do things more efficiently
and effectively.

• Automation (configure, build, test) is a great
way to free your mind for other problems.

• A little bit of effort can go a long way.
• …it’s also true that you can get

dramatically sidetracked from your
research…

Links etc.

• titus@caltech.edu

• Google “software carpentry” for a free
course on specific technologies and
approaches.

• Thanks to Greg Wilson, Brandon King, and
Diane Trout for Software Carpentry.

