

The Cartwheel Project (Python) Tools for Regulatory Genomics

C. Titus Brown Caltech (now) Michigan State (soon) ged.cse.msu.edu

Outline

Introduction to regulatory genomics
 A bioinformatics "in the medium" solution.
 Digression: project maintenance.
 Digression: sociological considerations.
 Moving forward? Future plans.

Fruit fly: 20,000 genes

Worm: 20,000 genes

Sea urchin: 22,000 genes

Most vertebrates, including humans: 25,000-45,000 genes

Unknown, but many genes in common, esp with vertebrates

Nature Reviews | Genetics

You can build a cathedral, ...

...and a train station, out of much the same material.

... because it's the architectural plans that make the difference.

As with buildings, so with bodies: the developmental blue prints for animals are stored in our genomes, in both the genes and the **regulatory regions** that control gene expression.

Finding these regulatory regions is important.

Anatomy of a gene regulatory network node

Transitioning to a developmental gene *network*: connecting the genes

Ubiq=ubiquitous; Mat = maternal; activ = activator; rep = repressor; unkn = unknown; Nucl. = nuclearization; χ = β-catenin source; nβ-TCF = nuclearized b-β-catenin-Tcf1; ES = early signal; ECNS = early cytoplasmic nuclearization system; Zyg. N. = zygotic Notch Copyright © 2001–2006 Hamid Bolouri and Eric Davidson

cis-Regulatory regions connect upstream genes to their regulators.

For example, this regulatory region...

Eukaryotic transcriptional initiation involves many general factors, as well as specific enhancers.

Figure from *MBOC*

...drives this tissue-specific gene expression in the sea urchin embryo.

What are we looking for?

What are we looking for?

Regulatory regions consist of multiple binding sites that function combinatorially.
 Binding sites are 8-30 bp segments of DNA to which transcription factors bind specifically.

Why is this a hard problem?

Genomes are *big*, regulatory regions are *small*.
 40-80 kb of DNA *per gene*; ~500 bp regulatory regions...

No obvious statistical signature, unlike protein coding regions.

No good way to *test* predictions without doing experiments (slow, expensive, difficult).

Comparative sequence analysis

 Look for regions conserved between two or more species.

Basic logic: if a given gene is expressed in similar places in two organisms, molecular mechanisms (including *sequence*) driving expression may not have diverged.

The simplest sequence matching algorithm on the planet:

FamilyRelations / pair view

Cartwheel

A system that lets biologists:
establish sequence analyses with custom params;
run on them on someone else's compute server;
visualize and interact with the results via a client GUI
Aimed at *bench biologists*.
Intended to be extensible.

Cartwheel technology (all OSS)

Server:

- Linux
- Python, Quixote (1.x), SCGI
- PostgreSQL db, psycopg
- Home-grown O/R adapter "cucumber"
- Several subpackages (paircomp, motility) w/Python interfaces

Client:

- Started with Jython; switched to FLTK (C++). Cross platform.
- Uses XML-RPC to communicate with server.

Ubiq=ubiquitous; Mat = maternal; activ = activator; rep = repressor; unkn = unknown; Nucl. = nuclearization; $\chi = \beta$ -catenin source; n β -TCF = nuclearized b- β -catenin-Tcf1; ES = early signal; ECNS = early cytoplasmic nuclearization system; Zyg. N. = zygotic Notch

Copyright © 2001-2006 Hamid Bolouri and Eric Davidson

Comparative Sequence Analysis works

This approach (not just Cartwheel...) has turned regulatory region search from a 2-yr technically difficult task into a 3-mo summer student project.

Cartwheel statistics

Built progressively 2002-2004; several iterations.
Server: 6k LoC (server); GUI: ~10k LoC
~600 total users, 50-100 labs, 30-40 institutions
~20 publications that used it
10-20 users/month

(Yes, scalability has never been an issue...)

Digression: maintenance

I'm the primary programmer (~95%).
I do other things (experiments, PhD thesis, etc.)

Consequently,Web site became *very* fragile.

"Test-obsessed"

Need to test Web sites => built twill. Need to run tests flexibly => use nose. Need to target more tests => built figleaf. Need to record Web tests => built scotch.

(yes, I got a little sidetracked...)

Automated testing rocks.

Probably ~30% of the Web app covered.
- unwarranted confidence in basic structure
- *very* easy to upgrade packages, transfer servers
(~1 day to upgrade postgresql, switch to new version of Debian on a VMware server)

Sociological considerations

User population is computationally naïve.
Most tools in this area are either *very simple* or *virtually impossible to use*.
We provided a simple Web interface, an intuitive GUI interface, and a tutorial.
Biologists prefer making their own judgements.
...and they hate high false positives.

Do other programmers use it?

Provided simple interfaces (XML-RPC) for establishing, manipulating, downloading analyses.Tried to make things easily extensible.No documentation, of course.

Result: no one uses my code.

My small libraries are moderately popular (paircomp, motility) because they have a simple Python API.

Planning for the future

Technology update:

- I love Quixote for Web apps
- FLTK sucks (ugly!) => QT or KWWidgets (testing!)
- I hear Python is up to 3000 now??
- SQLAlchemy is a very nice O/R mapping system

- ExtJS javascript toolkit.

New functionality thoughts

Cartwheel originally built around targeted subsequencing of genomes.Now we have a lot of big genomes sequenced!

⇒ Need to import information, interact with already-established alignments.

"for" loops don't cut it -- move to pygr for genome manipulation/interaction?

New functionality thoughts Motif searching is the new black.

Biologists want to search for binding sites (fuzzy 6-22 bp) and ask questions like:
do these sites correlate well with conservation?
do they cluster with themselves/others?
are they near my favorite gene(s)?

Idea is to expand Cartwheel into a tool for regulatory genomics hypothesis generation and exploration.

Concluding thoughts

Write end-user software that *works* over software that is flexible.

Tutorials, ease of use are both *really* important (pick your target audience - devs? users?)

If you're unlucky, your project will hang around for longer than you thought and you will have to think about maintenance.

Test.

Acknowledgements

Eric Davidson (old boss) Marianne Bronner-Fraser (new boss)

> Andy Cameron Barbara Wold Erich Schwarz Tristan De Buysscher Carolina Livi Diane Trout